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Dawson's function 
rx go 

(1) F(x) = e2 f et2 dt = f e-2 sin 2xt dt 

is of importance, for instance, in the calculation of profiles of absorption lines [1], 
[2]. Extensive tables of F(x) are given by Miller & Gordon [3], Rosser [4], and 
Lomander & Rittsten [5]; the last of these is the most satisfactory. Terrill & 
Sweeny [6] tabulate ex F(x). For use in machine computing in some astrophysical 
problems in which severe cancellation occurs, we have obtained a Chebyshev ex- 
pansion of F(x) capable of very high accuracy in the interval - k ? x < k, where 
k is sufficiently large so that, for x > k, F(x) may be obtained from the asymptotic 
series 

F(x) 2X + ? + 13 + 24X7 + 2x 22x3 23x5 24 x7 

Since F(x) is an odd function, we write 
00 

(2) F(kx) = E a,(k)T2,+1(X), -1 ? x < 1 
n=O 

where 

Tm(x) = cos(m cos-lx). 

From the orthogonality of the Tm(x) we have 

2 f7 (3) an(k) = - A F(k cos 0) cos (2n + 1)0 dO. 
71-o 

Integrating by parts and using the differential equation 

F'(x) = 1 - 2xF(x), 

we have 

2 k____ 

an(k) = 2 ? [1 - 2k cos OF(k cos 0)] sin 0 sin (2n + 1)0 dO 
7r 2n + I 

I k2 7r 

= Xr 2n ? 1 f F(k cos 0)[cos (2n + 3)0 - cos (2n - 1)0] d6 
7r2n + I 

or 

k 2 

(4) an(k) = 2(2n + 1) [an+l(k) -an_A)]. 

The coefficients an may be obtained by the well-known method (see for example 
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[7], p. 88-90) of setting 

aN , aN+l = 0 

and obtaining aNl, d * o recursively from (4). Then 

N 

F*(kx) = cZ da(k)T2n+l(x) 
n=O 

and c is obtained from the condition d F(O) = 1, 
dx 

N 

c = k/Z (-I)`(2n + 1)dn(k). 
n=O 

The coefficients an* (k) = can have been evaluated with N = 35 using double- 
precision arithmetic on the University of London Mercury Computer. In Table 1 
we give ao0, , a* for k = 5.0. The values of F(x) obtained by summing thirty 
terms in the series using the summation algorithm of Clenshaw [8] agree with the 
twenty-place value of Lomander and Rittsten to within two places in the 14th 
place. By including the terms corresponding to n = 30, . 33, the error should be 
reduced to a few units in the 15th place. 

The coefficients an(k) may also be evaluated analytically. Substituting the 
second form of F(x) given in (1) into (3) and interchanging the order of inte- 
gration, we have 

an(k) 2 J e-2 f sin (2k cos 0) cos (2n + 1)o do. 

Using some standard results from the theory of Bessel functions, we transform 

TABLE 1 

n an* (5) n an* (5) 

0 .19999999 99972224 17 -.00000278 76379719 
1 -.18400000 00029998 18 .00000085 66873627 
2 .15583999 99965025 19 -.00000025 18433784 
3 -.12166400 00043988 20 .00000007 09360221 
4 .08770815 99940391 21 -.00000001 91732257 
5 -.05851412 48086907 22 .00000000 49801256 
6 .03621573 01623914 23 -.00000000 12447734 
7 - .02084976 54398036 24 .00000000 02997777 
8 .01119601 16346270 25 -.00000000 00696450 
9 -.00562318 96167109 26 .00000000 00156262 

10 .00264876 34172265 27 -.00000000 00033897 
11 -.00117326 70757704 28 .00000000 00007116 
12 .00048995 19978088 29 - .00000000 00001447 
13 - .00019336 30801528 30 .00000000 00000285 
14 .00007228 77446788 31 - .00000000 00000055 
15 - .00002565 55124979 32 .00000000 00000010 
16 .00000866 20736841 33 -.00000000 00000002 
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this to 

an(k) = (-1)n2 f e-tJ2n?+(2kt) dt 

(5) = ( ,,//re-k2/I2 In+(1/2( 2/2) 

- , (n ? r) ! /2r-1[( _)r+n _ e-k2- n = 0, 1, 2 
r=O rI(n -r) 

This expression may easily be seen to be consistent with (4). 
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First One Hundred Zeros of Jo(x) Accurate to 
19 Significant Figures 

By Henry Gerber 

1. Introduction. Some physical investigations require a knowledge of accurate 
values of the zeros of the Bessel function Jo(x). The most extensive values pre- 
viously published are those of the British Association for the Advancement of 
Science [1], which consist of 10 decimal places. More accurate values have now 
been coniputed, and are presented in Table 1. The minimum accuracy of the tabu- 
lated zeros is 19 significant figures. 

2. Method of Computation. Two methods were used to compute the roots. The 
first twelve roots were computed by the method of "false position." The values of 
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